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Abstract

The ability to computationally predict whether a compound treats a disease would improve the
economy and success rate of drug approval. This study describes Project Rephetio to systematically
model drug e�cacy based on 755 existing treatments. First, we constructed Hetionet (neo4j.het.io), an
integrative network encoding knowledge from millions of biomedical studies. Hetionet v1.0 consists of
47,031 nodes of 11 types and 2,250,197 relationships of 24 types. Data was integrated from 29 public
resources to connect compounds, diseases, genes, anatomies, pathways, biological processes,
molecular functions, cellular components, pharmacologic classes, side e�ects, and symptoms. Next,
we identi�ed network patterns that distinguish treatments from non-treatments. Then we predicted
the probability of treatment for 209,168 compound–disease pairs (het.io/repurpose). Our predictions
validated on two external sets of treatment and provided pharmacological insights on epilepsy,
suggesting they will help prioritize drug repurposing candidates. This study was entirely open and
received realtime feedback from 40 community members.

https://neo4j.het.io/
https://het.io/repurpose/


Introduction

The cost of developing a new therapeutic drug has been estimated at 1.4 billion dollars [1], the
process typically takes 15 years from lead compound to market [2], and the likelihood of success is
stunningly low [3]. Strikingly, the costs have been doubling every 9 years since 1970, a sort of inverse
Moore’s law, which is far from an optimal strategy from both a business and public health perspective
[4]. Drug repurposing — identifying novel uses for existing therapeutics — can drastically reduce the
duration, failure rates, and costs of approval [5]. These bene�ts stem from the rich preexisting
information on approved drugs, including extensive toxicology pro�ling performed during
development, preclinical models, clinical trials, and postmarketing surveillance.

Drug repurposing is poised to become more e�cient as mining of electronic health records (EHRs) to
retrospectively assess the e�ect of drugs gains feasibility [6,7,8,9]. However, systematic approaches to
repurpose drugs based on mining EHRs alone will likely lack power due to multiple testing. Similar to
the approach followed to increase the power of genome-wide association studies (GWAS) [10,11],
integration of biological knowledge to prioritize drug repurposing will help overcome limited EHR
sample size and data quality.

In addition to repurposing, several other paradigm shifts in drug development have been proposed to
improve e�ciency. Since small molecules tend to bind to many targets, polypharmacology aims to
�nd synergy in the multiple e�ects of a drug [12]. Network pharmacology assumes diseases consist of
a multitude of molecular alterations resulting in a robust disease state. Network pharmacology seeks
to uncover multiple points of intervention into a speci�c pathophysiological state that together
rehabilitate an otherwise resilient disease process [13,14]. Although target-centric drug discovery has
dominated the �eld for decades, phenotypic screens have more recently resulted in a comparatively
higher number of �rst-in-class small molecules [15]. Recent technological advances have enabled a
new paradigm in which mid- to high-throughput assessment of intermediate phenotypes, such as the
molecular response to drugs, is replacing the classic target discovery approach [16,17,18].
Furthermore, integration of multiple channels of evidence, particularly diverse types of data, can
overcome the limitations and weak performance inherent to data of a single domain [19]. Modern
computational approaches o�er a convenient platform to tie these developments together as the
reduced cost and increased velocity of in silico experimentation massively lowers the barriers to entry
and price of failure [20,21].

Hetnets (short for heterogeneous networks) are networks with multiple types of nodes and
relationships. They o�er an intuitive, versatile, and powerful structure for data integration by
aggregating graphs for each relationship type onto common nodes. In this study, we developed a
hetnet (Hetionet v1.0) by integrating knowledge and experimental �ndings from decades of
biomedical research spanning millions of publications. We adapted an algorithm originally developed
for social network analysis and applied it to Hetionet v1.0 to identify patterns of e�cacy and predict
new uses for drugs. The algorithm performs edge prediction through a machine learning framework
that accommodates the breadth and depth of information contained in Hetionet v1.0 [22,23]. Our
approach represents an in silico implementation of network pharmacology that natively incorporates
polypharmacology and high-throughput phenotypic screening.

One fundamental characteristic of our method is that it learns and evaluates itself on existing medical
indications (i.e. a “gold standard”). Next, we introduce previous approaches that also performed
comprehensive evaluation on existing treatments. A 2011 study, named PREDICT, compiled 1,933
treatments between 593 drugs and 313 diseases [24]. Starting from the premise that similar drugs
treat similar diseases, PREDICT trained a classi�er that incorporates 5 types of drug-drug and 2 types
of disease-disease similarity. A 2014 study compiled 890 treatments between 152 drugs and 145
diseases with transcriptional signatures [25]. The authors found that compounds triggering an



opposing transcriptional response to the disease were more likely to be treatments, although this
e�ect was weak and limited to cancers. A 2016 study compiled 402 treatments between 238 drugs
and 78 diseases and used a single proximity score — the average shortest path distance between a
drug’s targets and disease’s associated proteins on the interactome — as a classi�er [26].

We build on these successes by creating a framework for incorporating the e�ects of any biological
relationship into the prediction of whether a drug treats a disease. By doing this, we were able to
capture a multitude of e�ects that have been suggested as in�uential for drug repurposing including
drug-drug similarity [24,27], disease-disease similarity [24,28], transcriptional signatures
[17,18,25,29,30], protein interactions [26], genetic association [31,32], drug side e�ects [33,34],
disease symptoms [35], and molecular pathways [36]. Our ability to create such an integrative model
of drug e�cacy relies on the hetnet data structure to unite diverse information. On Hetionet v1.0, our
algorithm learns which types of compound–disease paths discriminate treatments from non-
treatments in order to predict the probability that a compound treats a disease.

We refer to this study as Project Rephetio (pronounced as rep-het-ee-oh). Both Rephetio and Hetionet
are portmanteaus combining the words repurpose, heterogeneous, and network with the URL het.io.

http://het.io/


Results

Hetionet v1.0

We obtained and integrated data from 29 publicly available resources to create Hetionet v1.0 (Figure
1). The hetnet contains 47,031 nodes of 11 types (Table 1) and 2,250,197 relationships of 24 types
(Table 2). The nodes consist of 1,552 small molecule compounds and 137 complex diseases, as well as
genes, anatomies, pathways, biological processes, molecular functions, cellular components,
perturbations, pharmacologic classes, drug side e�ects, and disease symptoms. The edges represent
relationships between these nodes and encompass the collective knowledge produced by millions of
studies over the last half century.

Figure 1:  Hetionet v1.0. A) The metagraph, a schema of the network types. B) The hetnet visualized. Nodes are drawn
as dots and laid out orbitally, thus forming circles. Edges are colored by type. C) Metapath counts by path length. The
number of di�erent types of paths of a given length that connect two node types is shown. For example, the top-left tile
in the Length 1 panel denotes that Anatomy nodes are not connected to themselves (i.e. no edges connect nodes of this
type between themselves). However, the bottom-left tile of the Length 4 panel denotes that 88 types of length-four
paths connect Symptom to Anatomy nodes.

For example, Compound–binds–Gene edges represent when a compound binds to a protein encoded
by a gene. This information has been extracted from the literature by human curators and compiled
into databases such as DrugBank, ChEMBL, DrugCentral, and BindingDB. We combined these
databases to create 11,571 binding edges between 1,389 compounds and 1,689 genes. These edges
were compiled from 10,646 distinct publications, which Hetionet binding edges reference as an
attribute. Binding edges represent a comprehensive catalog constructed from low throughput
experimentation. However, we also integrated �ndings from high throughput technologies — many of



which have only recently become available. For example, we generated consensus transcriptional
signatures for compounds in LINCS L1000 and diseases in STARGEO.

Table 1:  Metanodes. Hetionet v1.0 includes 11 node types (metanodes). For each metanode, this table shows the
abbreviation, number of nodes, number of nodes without any edges, and the number of metaedges connecting the
metanode.

Metanode Abbr Nodes Disconnected Metaedges

Anatomy A 402 2 4

Biological Process BP 11,381 0 1

Cellular Component CC 1,391 0 1

Compound C 1,552 14 8

Disease D 137 1 8

Gene G 20,945 1,800 16

Molecular Function MF 2,884 0 1

Pathway PW 1,822 0 1

Pharmacologic Class PC 345 0 1

Side E�ect SE 5,734 33 1

Symptom S 438 23 1

Table 2:  Metaedges. Hetionet v1.0 contains 24 edge types (metaedges). For each metaedge, the table reports the
abbreviation, the number of edges, the number of source nodes connected by the edges, and the number of target
nodes connected by the edges. Note that all metaedges besides Gene→regulates→Gene are undirected.

Metaedge Abbr Edges Sources Targets

Anatomy–downregulates–Gene AdG 102,240 36 15,097

Anatomy–expresses–Gene AeG 526,407 241 18,094

Anatomy–upregulates–Gene AuG 97,848 36 15,929

Compound–binds–Gene CbG 11,571 1,389 1,689

Compound–causes–Side E�ect CcSE 138,944 1,071 5,701

Compound–downregulates–Gene CdG 21,102 734 2,880

Compound–palliates–Disease CpD 390 221 50

Compound–resembles–Compound CrC 6,486 1,042 1,054

Compound–treats–Disease CtD 755 387 77

Compound–upregulates–Gene CuG 18,756 703 3,247

Disease–associates–Gene DaG 12,623 134 5,392

Disease–downregulates–Gene DdG 7,623 44 5,745

Disease–localizes–Anatomy DlA 3,602 133 398

Disease–presents–Symptom DpS 3,357 133 415

Disease–resembles–Disease DrD 543 112 106

Disease–upregulates–Gene DuG 7,731 44 5,630

Gene–covaries–Gene GcG 61,690 9,043 9,532



Metaedge Abbr Edges Sources Targets

Gene–interacts–Gene GiG 147,164 9,526 14,084

Gene–participates–Biological Process GpBP 559,504 14,772 11,381

Gene–participates–Cellular Component GpCC 73,566 10,580 1,391

Gene–participates–Molecular Function GpMF 97,222 13,063 2,884

Gene–participates–Pathway GpPW 84,372 8,979 1,822

Gene→regulates→Gene Gr>G 265,672 4,634 7,048

Pharmacologic Class–includes–Compound PCiC 1,029 345 724

While Hetionet v1.0 is ideally suited for drug repurposing, the network has broader biological
applicability. For example, we have prototyped queries for a) identifying drugs that target a speci�c
pathway, b) identifying biological processes involved in a speci�c disease, c) identifying the drug
targets responsible for causing a speci�c side e�ect, and d) identifying anatomies with transcriptional
relevance for a speci�c disease [37]. Each of these queries was simple to write and took less than a
second to run on our publicly available Hetionet Browser. While it is possible that existing services
provide much of the aforementioned functionality, they o�er less versatility. Hetionet di�erentiates
itself in its ability to �exibly query across multiple domains of information. As a proof of concept, we
enhanced the biological process query (b), which identi�ed processes that were enriched for disease-
associated genes, using multiple sclerosis (MS) as an example disease. The verbose Cypher code for
this query is shown below:

MATCH path = 
  // Specify the type of path to match 
  (n0:Disease)-[e1:ASSOCIATES_DaG]-(n1:Gene)-[:INTERACTS_GiG]- 
  (n2:Gene)-[:PARTICIPATES_GpBP]-(n3:BiologicalProcess) 
WHERE 
  // Specify the source and target nodes 
  n0.name = 'multiple sclerosis' AND 
  n3.name = 'retina layer formation' 
  // Require GWAS support for the Disease-associates-Gene relationship 
  AND 'GWAS Catalog' in e1.sources 
  // Require the interacting gene to be upregulated in a relevant tissue 
  AND exists((n0)-[:LOCALIZES_DlA]-(:Anatomy)-[:UPREGULATES_AuG]-(n2)) 
RETURN path

The query above identi�es genes that interact with MS GWAS-genes. However, interacting genes are
discarded unless they are upregulated in an MS-related anatomy (i.e. anatomical structure, e.g. organ
or tissue). Then relevant biological processes are identi�ed. Thus, this single query spans 4 node and 5
relationship types.

The integrative potential of Hetionet v1.0 is re�ected by its connectivity. Among the 11 metanodes,
there are 66 possible source–target pairs. However, only 11 of them have at least one direct
connection. In contrast, for paths of length 2, 50 pairs have connectivity (paths types that start on the
source node type and end on the target node type, see Figure 1C). At length 3, all 66 pairs are
connected. At length 4, the source–target pair with the fewest types of connectivity (Side E�ect to
Symptom) has 13 metapaths, while the pair with the most connectivity types (Gene to Gene) has 3,542
pairs. This high level of connectivity across a diversity of biomedical entities forms the foundation for
automated translation of knowledge into biomedical insight.

https://neo4j.het.io/


Hetionet v1.0 is accessible via a Neo4j Browser at https://neo4j.het.io. This public Neo4j instance
provides users an installation-free method to query and visualize the network. The Browser contains a
tutorial guide as well as guides with the details of each Project Rephetio prediction. Hetionet v1.0 is
also available for download in JSON, Neo4j, and TSV formats [38]. The JSON and Neo4j database
formats include node and edge properties — such as URLs, source and license information, and
con�dence scores — and are thus recommended.

Systematic mechanisms of e�cacy

One aim of Project Rephetio was to systematically evaluate how drugs exert their therapeutic
potential. To address this question, we compiled a gold standard of 755 disease-modifying indications,
which form the Compound–treats–Disease edges in Hetionet v1.0. Next, we identi�ed types of paths
(metapaths) that occurred more frequently between treatments than non-treatments (any
compound–disease pair that is not a treatment). The advantage of this approach is that metapaths
naturally correspond to mechanisms of pharmacological e�cacy. For example, the Compound–binds–
Gene–associates–Disease (CbGaD) metapath identi�es when a drug binds to a protein corresponding
to a gene involved in the disease.

We evaluated all 1,206 metapaths that traverse from compound to disease and have length of 2–4
(Figure 2A). To control for the di�erent degrees of nodes, we used the degree-weighted path count
(DWPC, see Methods) — which downweights paths going through highly-connected nodes [22] — to
assess path prevalence. In addition, we compared the performance of each metapath to a baseline
computed from permuted networks. Hetnet permutation preserves node degree while eliminating
edge speci�city, allowing us to isolate the portion of unpermuted metapath performance resulting
from actual network paths. We refer to the permutation-adjusted performance measure as Δ AUROC.
A positive Δ AUROC indicates that paths of the given type tended to occur more frequently between
treatments than non-treatments, after accounting for di�erent levels of connectivity (node degrees) in
the hetnet. In general terms, Δ AUROC assesses whether paths of a given type were informative of
drug e�cacy.

https://neo4j.het.io/
https://github.com/dhimmel/hetionet


Figure 2:  Performance by type and model coe�cients. A) The performance of the DWPCs for 1,206 metapaths,
organized by their composing metaedges. The larger dots represent metapaths that were signi�cantly a�ected by
permutation (false discovery rate < 5%). Metaedges are ordered by their best performing metapath. Since a metapath’s
performance is limited by its least informative metaedge, the best performing metapath for a metaedge provides a
lower bound on the pharmacologic utility of a given domain of information. B) Barplot of the model coe�cients.
Features were standardized prior to model �tting to make the coe�cients comparable [39].

Overall, 709 of the 1,206 metapaths exhibited a statistically signi�cant Δ AUROC at a false discovery
rate cuto� of 5%. These 709 metapaths included all 24 metaedges, suggesting that each type of
relationship we integrated provided at least some therapeutic utility. However, not all metaedges
were equally present in signi�cant metapaths: 259 signi�cant metapaths included a Compound–
binds–Gene metaedge, whereas only 4 included a Gene–participates–Cellular Component metaedge.
Table 3 lists the predictiveness of several metapaths of interest. Refer to the Discussion for our
interpretation of these �ndings.

Table 3:  The predictiveness of select metapaths. A small selection of interesting or in�uential metapaths is provided
(complete table online). Len. refers to number of metaedges composing the metapath. Δ AUROC and −log10(p) assess
the performance of a metapath’s DWPC in discriminating treatments from non-treatments (in the all-features stage as
described in Methods). p assesses whether permutation a�ected AUROC. For reference, p = 0.05 corresponds to
−log10(p) = 1.30. Note that several metapaths shown here provided little evidence that Δ AUROC ≠ 0 underscoring their
poor ability to predict whether a compound treated a disease. Coef. reports a metapath’s logistic regression coe�cient
as seen in Figure 2B. Metapaths removed in feature selection have missing coe�cients whereas metapaths given zero-
weight by the elastic net have coef. = 0.0.

Abbrev. Len
.

Δ
AUR
OC

−log₁
₀(p) Coef. Metapath

CbGaD 2 14.5
% 6.2 0.20 Compound–binds–Gene–associates–Disease

http://het.io/repurpose/metapaths.html
http://het.io/repurpose/metapaths.html


Abbrev. Len
.

Δ
AUR
OC

−log₁
₀(p) Coef. Metapath

CdGuD 2 1.7% 4.5 Compound–downregulates–Gene–upregulates–Disease

CrCtD 2 22.8
% 6.9 0.15 Compound–resembles–Compound–treats–Disease

CtDrD 2 17.2
% 5.8 0.13 Compound–treats–Disease–resembles–Disease

CuGdD 2 1.1% 2.6 Compound–upregulates–Gene–downregulates–Disease

CbGbCtD 3 21.7
% 6.5 0.22 Compound–binds–Gene–binds–Compound–treats–Disease

CbGeAlD 3 8.4% 5.2 0.04 Compound–binds–Gene–expresses–Anatomy–localizes–Disease

CbGiGaD 3 9.0% 4.4 0.00 Compound–binds–Gene–interacts–Gene–associates–Disease

CcSEcCt
D 3 14.0

% 6.8 0.08 Compound–causes–Side E�ect–causes–Compound–treats–Disease

CdGdCtD 3 3.8% 4.6 0.00 Compound–downregulates–Gene–downregulates–Compound–treats–Disease

CdGuCtD 3 -2.1% 2.4 Compound–downregulates–Gene–upregulates–Compound–treats–Disease

CiPCiCtD 3 23.3
% 7.5 0.16 Compound–includes–Pharmacologic Class–includes–Compound–treats–

Disease

CpDpCtD 3 4.3% 3.9 0.06 Compound–palliates–Disease–palliates–Compound–treats–Disease

CrCrCtD 3 17.0
% 5.0 0.12 Compound–resembles–Compound–resembles–Compound–treats–Disease

CrCbGaD 3 8.2% 6.1 0.002 Compound–resembles–Compound–binds–Gene–associates–Disease

CtDdGd
D 3 4.2% 3.9 Compound–treats–Disease–downregulates–Gene–downregulates–Disease

CtDdGu
D 3 0.5% 1.0 Compound–treats–Disease–downregulates–Gene–upregulates–Disease

CtDlAlD 3 12.4
% 6.0 Compound–treats–Disease–localizes–Anatomy–localizes–Disease

CtDpSpD 3 13.9
% 6.1 Compound–treats–Disease–presents–Symptom–presents–Disease

CtDuGd
D 3 0.7% 1.3 Compound–treats–Disease–upregulates–Gene–downregulates–Disease

CtDuGu
D 3 1.1% 1.4 Compound–treats–Disease–upregulates–Gene–upregulates–Disease

CuGdCtD 3 -1.6% 2.9 Compound–upregulates–Gene–downregulates–Compound–treats–Disease

CuGuCtD 3 4.4% 3.5 0.00 Compound–upregulates–Gene–upregulates–Compound–treats–Disease

CbGiGiG
aD 4 7.0% 5.1 0.00 Compound–binds–Gene–interacts–Gene–interacts–Gene–associates–Disease

CbGpBP
pGaD 4 4.9% 3.8 0.00 Compound–binds–Gene–participates–Biological Process–participates–Gene–

associates–Disease

CbGpPW
pGaD 4 7.6% 7.9 0.05 Compound–binds–Gene–participates–Pathway–participates–Gene–associates–

Disease

Predictions of drug e�cacy



We implemented a machine learning approach to translate the network connectivity between a
compound and a disease into a probability of treatment [40,41]. The approach relies on the 755
known treatments as positives and 29,044 non-treatments as negatives to train a logistic regression
model. Note that 179,369 non-treatments were omitted as negative training observations because
they had a prior probability of treatment equal to zero (see Methods). The features consisted of a
prior probability of treatment, node degrees for 14 metaedges, and DWPCs for 123 metapaths that
were well suited for modeling. A cross-validated elastic net was used to minimize over�tting, yielding a
model with 31 features (Figure 2B). The DWPC features with negative coe�cients appear to be
included as node-degree-capturing covariates, i.e. they re�ect the general connectivity of the
compound and disease rather than speci�c paths between them. However, the 11 DWPC features
with non-negligible positive coe�cients represent the most salient types of connectivity for
systematically modeling drug e�cacy. See the metapaths with positive coe�cients in Table 3 for
unabbreviated names. As an example, the CcSEcCtD feature assesses whether the compound causes
the same side e�ects as compounds that treat the disease. Alternatively, the CbGeAlD feature
assesses whether the compound binds to genes that are expressed in the anatomies a�ected by the
disease.

We applied this model to predict the probability of treatment between each of 1,538 connected
compounds and each of 136 connected diseases, resulting in predictions for 209,168 compound–
disease pairs [42], available at http://het.io/repurpose/. The 755 known disease-modifying indications
were highly ranked (AUROC = 97.4%, Figure 3). The predictions also successfully prioritized two
external validation sets: novel indications from DrugCentral (AUROC = 85.5%) and novel indications in
clinical trial (AUROC = 70.0%). Together, these �ndings indicate that Project Rephetio has the ability to
recognize e�cacious compound–disease pairs.

Figure 3:  Predictions performance on four indication sets. We assess how well our predictions prioritize four sets of
indications. A) The y-axis labels denote the number of indications (+) and non-indications (−) composing each set. Violin
plots with quartile lines show the distribution of indications when compound–disease pairs are ordered by their



prediction. In all four cases, the actual indications were ranked highly by our predictions. B) ROC Curves with AUROCs in
the legend. C) Precision–Recall Curves with AUPRCs in the legend.

Predictions were scaled to the overall prevalence of treatments (0.36%). Hence a compound–disease
pair that received a prediction of 1% represents a 2-fold enrichment over the null probability. Of the
3,980 predictions with a probability exceeding 1%, 586 corresponded to known disease-modifying
indications, leaving 3,394 repurposing candidates. For a given compound or disease, we provide the
percentile rank of each prediction. Therefore, users can assess whether a given prediction is a top
prediction for the compound or disease. In addition, our table-based prediction browser links to a
custom guide for each prediction, which displays in the Neo4j Hetionet Browser. Each guide includes a
query to display the top paths supporting the prediction and lists clinical trials investigating the
indication.

Nicotine dependence case study

There are currently two FDA-approved medications for smoking cessation (varenicline and bupropion)
that are not nicotine replacement therapies. PharmacotherapyDB v1.0 lists varenicline as a disease-
modifying indication and nicotine itself as a symptomatic indication for nicotine dependence, but is
missing bupropion. Bupropion was �rst approved for depression in 1985. Owing to the serendipitous
observation that it decreased smoking in depressed patients taking this drug, Bupropion was
approved for smoking cessation in 1997 [43]. Therefore we looked whether Project Rephetio could
have predicted this repurposing. Bupropion was the 9th best prediction for nicotine dependence
(99.5th percentile) with a probability 2.50-fold greater than the null. Figure 4 shows the top paths
supporting the repurposing of bupropion.

Figure 4:  Evidence supporting the repurposing of bupropion for smoking cessation. This �gure shows the 10 most
supportive paths (out of 365 total) for treating nicotine dependence with bupropion, as available in this prediction’s
Neo4j Browser guide. Our method detected that bupropion targets the CHRNA3 gene, which is also targeted by the
known-treatment varenicline [44]. Furthermore, CHRNA3 is associated with nicotine dependence [45] and participates in

http://het.io/repurpose/browse.html?id=DOID_0050742
https://neo4j.het.io/browser/?cmd=play&arg=https://neo4j.het.io/guides/rep/DB01156/DOID_0050742.html


several pathways that contain other nicotinic-acetylcholine-receptor (nAChR) genes associated with nicotine
dependence. Finally, bupropion causes terminal insomnia [46] as does varenicline [47], which could indicate an
underlying common mechanism of action.

Atop the nicotine dependence predictions were nicotine (10.97-fold over null), cytisine (10.58-fold),
and galantamine (9.50-fold). Cytisine is widely used in Eastern Europe for smoking cessation due to its
availability at a fraction of the cost of other pharmaceutical options [48]. In the last half decade, large
scale clinical trials have con�rmed cytisine’s e�cacy [49,50]. Galantamine, an approved Alzheimer’s
treatment, is currently in Phase 2 trial for smoking cessation and is showing promising results [51]. In
summary, nicotine dependence illustrates Project Rephetio’s ability to predict e�cacious treatments
and prioritize historic and contemporary repurposing opportunities.

Epilepsy case study

Several factors make epilepsy an interesting disease for evaluating repurposing predictions [52].
Antiepileptic drugs work by increasing the seizure threshold — the amount of electric stimulation that
is required to induce seizure. The e�ect of a drug on the seizure threshold can be cheaply and reliably
tested in rodent models. As a result, the viability of most approved drugs in treating epilepsy is
known.

We focused our evaluation on the top 100 scoring compounds — referred to as the epilepsy
predictions in this section — after discarding a single combination drug. We classi�ed each compound
as anti-ictogenic (seizure suppressing), unknown (no established e�ect on the seizure threshold), or
ictogenic (seizure generating) according to medical literature [52]. Of the top 100 epilepsy predictions,
77 were anti-ictogenic, 8 were unknown, and 15 were ictogenic (Figure 5A). Notably, the predictions
contained 23 of the 25 disease-modifying antiepileptics in PharamcotherapyDB v1.0.

https://clinicaltrials.gov/ct2/show/NCT01669538


Figure 5:  Top 100 epilepsy predictions. A) Compounds — ranked from 1 to 100 by their predicted probability of
treating epilepsy — are colored by their e�ect on seizures [52]. The highest predictions are almost exclusively anti-
ictogenic. Further down the prediction list, the prevalence of drugs with an ictogenic (contraindication) or unknown
(novel repurposing candidate) e�ect on epilepsy increases. All compounds shown received probabilities far exceeding
the null probability of treatment (0.36%). B) A chemical similarity network of the epilepsy predictions, with each
compound’s 2D structure [53]. Edges are Compound–resembles–Compound relationships from Hetionet v1.0. Nodes
are colored by their e�ect on seizures. C) The relative contribution of important drug targets to each epilepsy prediction
[53]. Speci�cally, pie charts show how the 8 most-supportive drug targets across all 100 epilepsy predictions contribute



to individual predictions. Other Targets represents the aggregate contribution of all targets not listed. The network
layout is identical to B.

Many of the 77 anti-ictogenic compounds were not �rst-line antiepileptic drugs. Instead, they were
used as ancillary drugs in the treatment of status epilepticus. For example, we predicted four
halogenated ethers, two of which (iso�urane and des�urane) are used clinically to treat life-
threatening seizures that persist despite treatment [54]. As inhaled anesthetics, these compounds are
not appropriate as daily epilepsy medications, but are feasible for refractory status epilepticus where
patients are intubated.

Given this high precision (77%), the 8 compounds of unknown e�ect are promising repurposing
candidates. For example, acamprosate — whose top prediction was epilepsy — is a taurine analog
that promotes alcohol abstinence. Support for this repurposing arose from acamprosate’s inhibition
of the glutamate receptor and positive modulation of the GABAᴀ receptor (Figure 5C). If e�ective
against epilepsy, acamprosate could serve a dual bene�t for recovering alcoholics who experience
seizures from alcohol withdrawal.

While certain classes of compounds were highly represented in our epilepsy predictions, such
benzodiazepines and barbiturates, there was also considerable diversity [52]. The 100 predicted
compounds encompassed 26 third-level ATC codes [55], such as antiarrhythmics (quinidine, classi�ed
as anti-ictogenic) and urologicals (phenazopyridine, classi�ed as unknown). Furthermore, 25 of the
compounds were chemically distinct, i.e. they did not resemble any of the other epilepsy predictions
(Figure 5B).

Next, we investigated which components of Hetionet contributed to the epilepsy predictions [52]. In
total, 392,956 paths of 12 types supported the predictions. Using several di�erent methods for
grouping paths, we were able to quantify the aggregate biological evidence. Our algorithm primarily
drew on two aspects of epilepsy: its known treatments (76% of the total support) and its genetic
associations (22% of support). In contrast, our algorithm drew heavily on several aspects of the
predicted compounds: their targeted genes (44%), their chemically similar compounds (30%), their
pharmacologic classes, their palliative indications (5%), and their side e�ects (4%).

Speci�cally, 266,192 supporting paths originated with a Compound–binds–Gene relationship.
Aggregating support by these genes shows the extent that 121 di�erent drug targets contributed to
the predictions [52]. In order of importance, the predictions targeted GABAᴀ receptors (15.3% of total
support), cytochrome P450 enzymes (5.6%), the sodium channel (4.6%), glutamate receptors (3.8%),
the calcium channel (2.7%), carbonic anhydrases (2.5%), cholinergic receptors (2.1%) and the
potassium channel (1.4%). Besides cytochrome P450, which primarily in�uences pharmacokinetics
[56], our method detected and leveraged bona�de anti-ictogenic mechanisms [57]. Figure 5C shows
drug target contributions per compound and illustrates the considerable mechanistic diversity among
the predictions.

Also notable are the 15 ictogenic compounds in our top 100 predictions. Nine of the ictogenic
compounds share a tricyclic structure (Figure 5B), �ve of which are tricyclic antidepressants. While the
ictogenic mechanisms of these antidepressants are still unclear [58], Figure 5C suggests their
anticholinergic e�ects may be responsible [59], in accordance with previous theories [tag:dailey?].

We also ranked the contribution of the 1,137 side e�ects that supported the epilepsy predictions
through 117,720 CcSEcCtD paths. The top �ve side e�ects — ataxia (0.069% of total support),
nystagmus (0.049%), diplopia (0.045%), somnolence (0.044%), and vomiting (0.043%) — re�ect
established adverse e�ects of antiepileptic drugs [60,61,62,tag:hilton?,tag:placidi?]. In summary, our
method simultaneously identi�ed the hallmark side e�ects of antiepileptic drugs while incorporating
this knowledge to prioritize 1,538 compounds for anti-ictogenic activity.



Discussion

We created Hetionet v1.0 by integrating 29 resources into a single data structure — the hetnet.
Consisting of 11 types of nodes and 24 types of relationships, Hetionet v1.0 brings more types of
information together than previous leading-studies in biological data integration [63]. Moreover, we
strove to create a reusable, extensible, and property-rich network. While all of the resources we
include are publicly available, their integration was a time-intensive undertaking and required careful
consideration of legal barriers to data reuse. Hetionet allows researchers to begin answering
integrative questions without having to �rst spend months processing data.

Our public Neo4j instance allows users to immediately interact with Hetionet. Through the Cypher
language, users can perform highly specialized graph queries with only a few lines of code. Queries
can be executed in the web browser or programmatically from a language with a Neo4j driver. For
users that are unfamiliar with Cypher, we include several example queries in a Browser guide. In
contrast to traditional REST APIs, our public Neo4j instance provides users with maximal �exibility to
construct custom queries by exposing the underlying database.

As data has grown more plentiful and diverse, so has the applicability of hetnets. Unfortunately,
network science has been naturally fragmented by discipline resulting in relatively slow progress in
integrating heterogeneous data. A 2014 analysis identi�ed 78 studies using multilayer networks — a
superset of hetnets (heterogeneous information networks) with the potential for additional
dimensions, such as time. However, the studies relied on 26 di�erent terms, 9 of which had multiple
de�nitions [64,65]. Nonetheless, core infrastructure and algorithms for hetnets are emerging.
Compared to the existing mathematical frameworks for multilayer networks that must deal with
layers other than type (such as the aspect of time) [64], the primary obligation of hetnet algorithms is
to be type aware. One goal of our project has been to unite hetnet research across disciplines. We
approached this goal by making Project Rephetio entirely available online and inviting community
feedback throughout the process [66].

Integrating every resource into a single interconnected data structure allowed us to assess systematic
mechanisms of drug e�cacy. Using the max performing metapath to assess the pharmacological
utility of a metaedge (Figure 2A), we can divide our relationships into tiers of informativeness. The top
tier consists of the types of information traditionally considered by pharmacology: Compound–treats–
Disease, Pharmacologic Class–includes–Compound, Compound–resembles–Compound, Disease–
resembles–Disease, and Compound–binds–Gene. The upper-middle tier consists of types of
information that have been the focus of substantial medical study, but have only recently started to
play a bigger role in drug development, namely the metaedges Disease–associates–Gene, Compound–
causes–Side E�ect, Disease–presents–Symptom, Disease–localizes–Anatomy, and Gene–interacts–
Gene.

The lower-middle tier contains the transcriptomics metaedges such as Compound–downregulates–
Gene, Anatomy–expresses–Gene, Gene→regulates→Gene, and Disease–downregulates–Gene. Much
excitement surrounds these resources due to their high throughput and genome-wide scope, which
o�ers a route to drug discovery that is less biased by existing knowledge. However, our �ndings
suggest that these resources are only moderately informative of drug e�cacy. Other lower-middle tier
metaedges were the product of time-intensive biological experimentation, such as Gene–participates–
Pathway, Gene–participates–Molecular Function, and Gene–participates–Biological Process. Unlike the
top tier resources, this knowledge has historically been pursued for basic science rather than
primarily medical applications. The weak yet appreciable performance of the Gene–covaries–Gene
suggests the synergy between the �elds of evolutionary genomics and disease biology. The lower tier
included the Gene–participates–Cellular Component metaedge, which may re�ect that the relevance



of cellular location to pharmacology is highly case dependent and not amenable to systematic
pro�ling.

The performance of speci�c metapaths (Table 3) provides further insight. For example, signi�cant
emphasis has been put on the use of transcriptional data for drug repurposing [30]. One common
approach has been to identify compounds with opposing transcriptional signatures to a disease
[18,67]. However, several systematic studies report underwhelming performance of this approach
[24,25,26] — a �nding supported by the low performance of the CuGdD and CdGuD metapaths in
Project Rephetio. Nonetheless, other transcription-based methods showed some promise.
Compounds with similar transcriptional signatures were prone to treating the same disease (CuGuCtD
and CdGdCtD metapaths), while compounds with opposing transcriptional signatures were slightly
averse to treating the same disease (CuGdCtD and CdGuCtD metapaths). In contrast, diseases with
similar transcriptional pro�les were not prone to treatment by the same compound (CtDdGuD and
CtDuGdD).

By comparably assessing the informativeness of di�erent metaedges and metapaths, Project
Rephetio aims to guide future research towards promising data types and analyses. One caveat is that
omics-scale experimental data will likely play a larger role in developing the next generation of
pharmacotherapies. Hence, were performance reevaluated on treatments discovered in the
forthcoming decades, the predictive ability of these data types may rise. Encouragingly, most data
types were at least weakly informative and hence suitable for further study. Ideally, di�erent data
types would provide orthogonal information. However, our model for whether a compound treats a
disease focused on 11 metapaths — a small portion of the hundreds of metapaths available. While
parsimony aids interpretation, our model did not draw on the weakly-predictive high-throughput data
types — which are intriguing for their novelty, scalability, and cost-e�ectiveness — as much as we had
hypothesized.

Instead our model selected types of information traditionally considered in pharmacology. However
unlike a pharmacologist whose area of expertise may be limited to a few drug classes, our model was
able to predict probabilities of treatment for all 209,168 compound–disease pairs. Furthermore, our
model systematically learned the importance of each type of network connectivity. For any
compound–disease pair, we now can immediately provide the top network paths supporting its
therapeutic e�cacy. A traditional pharmacologist may be able to produce a similar explanation, but
likely not until spending substantial time researching the compound’s pharmacology, the disease’s
pathophysiology, and the molecular relationships in between. Accordingly, we hope certain
predictions will spur further research, such as trials to investigate the o�-label use of acamprosate for
epilepsy, which is supported by one animal model [68].

As demonstrated by the 15 ictogenic compounds in our top 100 epilepsy predictions, Project
Rephetio’s predictions can include contraindications in addition to indications. Since many of Hetionet
v1.0’s relationship types are general (e.g. the Compound–binds–Gene relationship type con�ates
antagonist with agonist e�ects), we expect some high scoring predictions to exacerbate rather than
treat the disease. However, the predictions made by Hetionet v1.0 represent such substantial relative
enrichment over the null that uncovering the correct directionality is a logical next step and worth
undertaking. Going forward, advances in automated mining of the scienti�c literature could enable
extraction of precise relationship types at omics scale [69,70].

Future research should focus on gleaning orthogonal information from data types that are so
expansive that computational methods are the only option. Our CuGuCtD feature — measuring
whether a compound upregulates the same genes as compounds which treat the disease — is a good
example. This metapath was informative by itself (Δ AUROC = 4.4%) but was not selected by the
model, despite its orthogonal origin (gene expression) to selected metapaths. Using a more extensive



catalog of treatments as the gold standard would be one possible approach to increase the power of
feature selection.

Integrating more types of information into Hetionet should also be a future priority. The “network
e�ect” phenomenon suggests that the addition of each new piece of information will enhance the
value of Hetionet’s existing information. We envision a future where all biological knowledge is
encoded into a single hetnet. Hetionet v1.0 was an early attempt, and we hope the strong
performance of Project Rephetio in repurposing drugs foreshadows the many applications that will
thrive from encoding biology in hetnets.



Methods

Hetionet was built entirely from publicly available resources with the goal of integrating a broad
diversity of information types of medical relevance, ranging in scale from molecular to organismal.
Practical considerations such as data availability, licensing, reusability, documentation, throughput,
and standardization informed our choice of resources. We abided by a simple litmus test for
determining how to encode information in a hetnet: nodes represent nouns, relationships represent
verbs [71,tag:chen?].

Our method for relationship prediction creates a strong incentive to avoid redundancy, which
increases the computational burden without improving performance. In a previous study to predict
disease–gene associations using a hetnet of pathophysiology [22], we found that di�erent types of
gene sets contributed highly redundant information. Therefore, in Hetionet v1.0 we reduced the
number of gene set node types from 14 to 3 by omitting several gene set collections and aggregating
all pathway nodes.

Nodes

Nodes encode entities. We extracted nodes from standard terminologies, which provide curated
vocabularies to enable data integration and prevent concept duplication. The ease of mapping
external vocabularies, adoption, and comprehensiveness were primary selection criteria. Hetionet
v1.0 includes nodes from 5 ontologies — which provide hierarchy of entities for a speci�c domain —
selected for their conformity to current best practices [72].

We selected 137 terms from the Disease Ontology [73,74] (which we refer to as DO Slim [75,76]) as
our disease set. Our goal was to identify complex diseases that are distinct and speci�c enough to be
clinically relevant yet general enough to be well annotated. To this end, we included diseases that
have been studied by GWAS and cancer types from TopNodes_DOcancerslim  [77]. We ensured that
no DO Slim disease was a subtype of another DO Slim disease. Symptoms were extracted from MeSH
by taking the 438 descendants of Signs and Symptoms [78,79].

Approved small molecule compounds with documented chemical structures were extracted from
DrugBank version 4.2 [80,81,82]. Unapproved compounds were excluded because our focus was
repurposing. In addition, unapproved compounds tend to be less studied than approved compounds
making them less attractive for our approach where robust network connectivity is critical. Finally,
restricting to small molecules with known documented structures enabled us to map between
compound vocabularies (see Mappings).

Side e�ects were extracted from SIDER version 4.1 [83,84,85]. SIDER codes side e�ects using UMLS
identi�ers [86], which we also adopted. Pharmacologic Classes were extracted from the DrugCentral
data repository [87,88]. Only pharmacologic classes corresponding to the “Chemical/Ingredient”,
“Mechanism of Action”, and “Physiologic E�ect” FDA class types were included to avoid pharmacologic
classes that were synonymous with indications [88].

Protein-coding human genes were extracted from Entrez Gene [89,90,91]. Anatomical structures,
which we refer to as anatomies, were extracted from Uberon [92]. We selected a subset of 402
Uberon terms by excluding terms known not to exist in humans and terms that were overly broad or
arcane [93,94].

Pathways were extracted by combining human pathways from WikiPathways [95,96], Reactome [97],
and the Pathway Interaction Database [98]. The latter two resources were retrieved from Pathway
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Commons (RRID:SCR_002103) [99], which compiles pathways from several providers. Duplicate
pathways and pathways without multiple participating genes were removed [100,101]. Biological
processes, cellular components, and molecular functions were extracted from the Gene Ontology
[102]. Only terms with 2–1000 annotated genes were included.

Mappings

Before adding relationships, all identi�ers needed to be converted into the vocabularies matching that
of our nodes. Oftentimes, our node vocabularies included external mappings. For example, the
Disease Ontology includes mappings to MeSH, UMLS, and the ICD, several of which we submitted
during the course of this study [103]. In a few cases, the only option was to map using gene symbols, a
disfavored method given that it can lead to ambiguities.

When mapping external disease concepts onto DO Slim, we used transitive closure. For example, the
UMLS concept for primary progressive multiple sclerosis ( C0751964 ) was mapped to the DO Slim
term for multiple sclerosis ( DOID:2377 ).

Chemical vocabularies presented the greatest mapping challenge [81], since these are poorly
standardized [104]. UniChem’s [105] Connectivity Search [106] was used to map compounds, which
maps by atomic connectivity (based on First InChIKey Hash Blocks [107]) and ignores small molecular
di�erences.

Edges

Anatomy–downregulates–Gene and Anatomy–upregulates–Gene edges [108,109,110] were extracted
from Bgee [111], which computes di�erentially expressed genes by anatomy in post-juvenile adult
humans. Anatomy–expresses–Gene edges were extracted from Bgee and TISSUES [112,113,114].

Compound–binds–Gene edges were aggregated from BindingDB [115,116], DrugBank [80,117], and
DrugCentral [87]. Only binding relationships to single proteins with a�nities of at least 1 μM (as
determined by Kd, Kᵢ, or IC₅₀) were selected from the October 2015 release of BindingDB [118,119].
Target, carrier, transporter, and enzyme interactions with single proteins (i.e. excluding protein
groups) were extracted from DrugBank 4.2 [82,120]. In addition, all mapping DrugCentral target
relationships were included [88].

Compound–treats–Disease (disease-modifying indications) and Compound–palliates–Disease
(symptomatic indications) edges are from PharmacotherapyDB as described in Intermediate
resources. Compound–causes–Side E�ect edges were obtained from SIDER 4.1 [83,84,85], which uses
natural language processing to identify side e�ects in drug labels. Compound–resembles–Compound
relationships [82,121,122] represent chemical similarity and correspond to a Dice coe�cient ≥ 0.5
[123] between extended connectivity �ngerprints [124,125]. Pharmacologic Class–includes–
Compound edges were extracted from DrugCentral for three FDA class types [87,88]. Compound–
downregulates–Gene and Compound–upregulates–Gene relationships were computed from LINCS
L1000 as described in Intermediate resources.

Disease–associates–Gene edges were extracted from the GWAS Catalog [126], DISEASES [127,128],
DisGeNET [129,130], and DOAF [131,132]. The GWAS Catalog compiles disease–SNP associations from
published GWAS [133]. We aggregated overlapping loci associated with each disease and identi�ed
the mode reported gene for each high con�dence locus [134,135]. DISEASES integrates evidence of
association from text mining, curated catalogs, and experimental data [136]. Associations from
DISEASES with integrated scores ≥ 2 were included after removing the contribution of DistiLD.
DisGeNET integrates evidence from over 10 sources and reports a single score for each association
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[137,138]. Associations with scores ≥ 0.06 were included. DOAF mines Entrez Gene GeneRIFs (textual
annotations of gene function) for disease mentions [139]. Associations with 3 or more supporting
GeneRIFs were included. Disease–downregulates–Gene and Disease–upregulates–Gene relationships
[140,141] were computed using STARGEO as described in Intermediate resources.

Disease–localizes–Anatomy, Disease–presents–Symptom, and Disease–resembles–Disease edges
were calculated from MEDLINE co-occurrence [78,142]. MEDLINE is a subset of 21 million PubMed
articles for which designated human curators have assigned topics. When retrieving articles for a
given topic (MeSH term), we activated two non-default search options as speci�ed below: majr  for
selecting only articles where the topic is major and noexp  for suppressing explosion (returning
articles linked to MeSH subterms). We identi�ed 4,161,769 articles with two or more disease topics;
696,252 articles with both a disease topic ( majr ) and an anatomy topic ( noexp ) [143]; and 363,928
articles with both a disease topic ( majr ) and a symptom topic ( noexp ). We used a Fisher’s exact test
[144] to identify pairs of terms that occurred together more than would be expected by chance in
their respective corpus. We included co-occurring terms with p < 0.005 in Hetionet v1.0.

Gene→regulates→Gene directed edges were generated from the LINCS L1000 genetic interference
screens (see Intermediate resources) and indicate that knockdown or overexpression of the source
gene signi�cantly dysregulated the target gene [145,146]. Gene–covaries–Gene edges represent
evolutionary rate covariation ≥ 0.75 [147,148,149]. Gene–interacts–Gene edges [150,151] represent
when two genes produce physically-interacting proteins. We compiled these interactions from the
Human Interactome Database [152,153,154,155], the Incomplete Interactome [156], and our previous
study [22]. Gene–participates–Biological Process, Gene–participates–Cellular Component, and Gene–
participates–Molecular Function edges are from Gene Ontology annotations [157]. As described in
Intermediate resources, annotations were propagated [158,159]. Gene–participates–Pathway edges
were included from the human pathway resources described in the Nodes section [100,101].

Directionality

Whether a certain type of relationship has directionality is de�ned at the metaedge level. Directed
metaedges are only necessary when they connect a metanode to itself and correspond to an
asymmetric relationship. In the case of Hetionet v1.0, the sole directed metaedge was
Gene→regulates→Gene. To demonstrate the implications of directionality, Hetionet v1.0 contains two
relationships between the genes HADH and STAT1: HADH–interacts–STAT1 and
HADH→regulates→STAT1. Both edges can be represented in the inverse orientation: STAT1–interacts–
HADH and STAT1←regulates←HADH. However due to directed nature of the regulates relationship,
STAT1→regulates→HADH is a distinct edge, which does not exist in the network. Similarly, HADH–
associates–obesity and obesity–associates–HADH are inverse orientations of the same underlying
undirected relationship. Accordingly, the following path exists in the network: obesity–associates–
HADH→regulates→STAT1, which can also be inverted to STAT1←regulates←HADH–associates–
obesity.

Intermediate resources

In the process of creating Hetionet, we produced several datasets with broad applicability that
extended beyond Project Rephetio. These resources are referred to as intermediate resources and
described below.

Transcriptional signatures of disease using STARGEO

STARGEO is a nascent platform for annotating and meta-analyzing di�erential gene expression
experiments [160]. The STAR acronym stands for Search-Tag-Analyze Resources, while GEO refers to
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the Gene Expression Omnibus [161,162]. STARGEO is a layer on top of GEO that crowdsources sample
annotation and automates meta-analysis.

Using STARGEO, we computed di�erentially expressed genes between healthy and diseased samples
for 49 diseases [140,141]. First, we and others created case/control tags for 66 diseases. After
combing through GEO series and tagging samples, 49 diseases had su�cient data for case-control
meta-analysis: multiple series with at least 3 cases and 3 controls. For each disease, we performed a
random e�ects meta-analysis on each gene to combine log₂ fold-change across series. These analyses
incorporated 27,019 unique samples from 460 series on 107 platforms.

Di�erentially expressed genes (false discovery rate ≤ 0.05) were identi�ed for each disease. The
median number of upregulated genes per disease was 351 and the median number of downregulated
genes was 340. Endogenous depression was the only of the 49 diseases without any signi�cantly
dysregulated genes.

Transcriptional signatures of perturbation from LINCS L1000

LINCS L1000 pro�led the transcriptional response to small molecule and genetic interference
perturbations. To increase throughput, expression was only measured for 978 genes, which were
selected for their ability to impute expression of the remaining genes. A single perturbation was often
assayed under a variety of conditions including cell types, dosages, timepoints, and concentrations.
Each condition generates a single signature of dysregulation z-scores. We further processed these
signatures to �t into our approach [163,164].

First we computed consensus signatures — which meta-analyze multiple signatures to condense
them into one — for DrugBank small molecules, Entrez genes, and all L1000 perturbations [145,146].
First, we discarded non-gold (non-replicating or indistinct) signatures. Then we meta-analyzed z-scores
using Stou�er’s method. Each signature was weighted by its average Spearman’s correlation to other
signatures, with a 0.05 minimum, to de-emphasize discordant signatures. Our signatures include the
978 measured genes and the 6,489 imputed genes from the “best inferred gene subset”. To identify
signi�cantly dysregulated genes, we selected genes using a Bonferroni cuto� of p = 0.05 and limited
the number of imputed genes to 1,000.

The consensus signatures for genetic perturbations allowed us to assess various characteristics of the
L1000 dataset. First, we looked at whether genetic interference dysregulated its target gene in the
expected direction [165]. Looking at measured z-scores for target genes, we found that the
knockdown perturbations were highly reliable, while the overexpression perturbations were only
moderately reliable with 36% of overexpression perturbations downregulating their target. However,
imputed z-scores for target genes barely exceeded chance at responding in the expected direction to
interference. Hence, we concluded that the imputation quality of LINCS L1000 is poor. However, when
restricting to signi�cantly dyseregulated targets, 22 out of 29 imputed genes responded in the
expected direction. This provides some evidence that the directional �delity of imputation is higher for
signi�cantly dysregulated genes. Finally, we found that the transcriptional signatures of knocking
down and overexpressing the same gene were positively correlated 65% of the time, suggesting the
presence of a general stress response [166].

Based on these �ndings, we performed additional �ltering of signifcantly dysregulated genes when
building Hetionet v1.0. Compound–down/up-regulates–Gene relationships were restricted to the 125
most signi�cant per compound-direction-status combination (status refers to measured versus
imputed). For genetic interference perturbations, we restricted to the 50 most signi�cant genes per
gene-direction-status combination and merged the remaining edges into a single
Gene→regulates→Gene relationship type containing both knockdown and overexpression
perturbations.

http://www.lincscloud.org/l1000/


PharmacotherapyDB: physician curated indications

We created PharmacotherapyDB, an open catalog of drug therapies for disease [167,168,169]. Version
1.0 contains 755 disease-modifying therapies and 390 symptomatic therapies between 97 diseases
and 601 compounds.

This resource was motivated by the need for a gold standard of medical indications to train and
evaluate our approach. Initially, we identi�ed four existing indication catalogs [170]: MEDI-HPS which
mined indications from RxNorm, SIDER 2, MedlinePlus, and Wikipedia [171]; LabeledIn which
extracted indications from drug labels via human curation [172,173,174]; EHRLink which identi�ed
medication–problem pairs that clinicians linked together in electronic health records [175,176]; and
indications from PREDICT, which were compiled from UMLS relationships, drugs.com, and drug labels
[24]. After mapping to DO Slim and DrugBank Slim, the four resources contained 1,388 distinct
indications.

However, we noticed that many indications were palliative and hence problematic as a gold standard
of pharmacotherapy for our in silico approach. Therefore, we recruited two practicing physicians to
curate the 1,388 preliminary indications [177]. After a pilot on 50 indications, we de�ned three
classi�cations: disease modifying meaning a drug that therapeutically changes the underlying or
downstream biology of the disease; symptomatic meaning a drug that treats a signi�cant symptom of
the disease; and non-indication meaning a drug that neither therapeutically changes the underlying or
downstream biology nor treats a signi�cant symptom of the disease. Both curators independently
classi�ed all 1,388 indications.

The two curators disagreed on 444 calls (Cohen’s κ = 49.9%). We then recruited a third practicing
physician, who reviewed all 1,388 calls and created a detailed explanation of his methodology [177].
We proceeded with the third curator’s calls as the consensus curation. The �rst two curators did have
reservations with classifying steroids as disease modifying for autoimmune diseases. We ultimately
considered that these indications met our de�nition of disease modifying, which is based on a
pathophysiological rather than clinical standard. Accordingly, therapies we consider disease modifying
may not be used to alter long-term disease course in the modern clinic due to a poor risk–bene�t
ratio.

User-friendly Gene Ontology annotations

We created a browser (http://git.dhimmel.com/gene-ontology/) to provide straightforward access to
Gene Ontology annotations [158,159]. Our service provides annotations between Gene Ontology
terms and Entrez Genes. The user chooses propagated/direct annotation and all/experimental
evidence. Annotations are currently available for 37 species and downloadable as user-friendly TSV
�les.

Data copyright and licensing

We committed to openly releasing our data and analyses from the origin of the project [178]. Our
goals were to contribute to the advancement of science [179,180], maximize our impact [181,182],
and enable reproducibility [183,184,185]. These objectives required publicly distributing and openly
licensing Hetionet and Project Rephetio data and analyses [186,187].

Since we integrated only public resources, which were overwhelmingly funded by academic grants, we
had assumed that our project and open sharing of our network would not be an issue. However, upon
releasing a preliminary version of Hetionet [188], a community reviewer informed us of legal barriers
to integrating public data. In essence, both copyright (rights of exclusivity automatically granted to



original works) and terms of use (rules that users must agree to in order to use a resource) place
legally-binding restrictions on data reuse. In short, public data is not by default open data.

Hetionet v1.0 integrates 29 resources (Table 4), but two resources were removed prior to the v1.0
release. Of the total 31 resources [189], �ve were United States government works not subject to
copyright, and twelve had licenses that met the Open De�nition of knowledge version 2.1. Four
resources allowed only non-commercial reuse. Most problematic were the remaining nine resources
that had no license — which equates to all rights reserved by default and forbids reuse [190] — and
one resource that explicitly forbid redistribution.

Table 4:  The 29 public data resources integrated to construct Hetionet v1.0. Components notes which types of
nodes and edges in Hetionet v1.0 derived from the resource (as per the abbreviations in Tables 1 & 2). Cat. notes the
general category of license [189]. Category 1 refers to United States government works that we deemed were not
subject to copyright. Category 2 refers to resources with licenses that allow use, redistribution, and modi�cation
(although some restrictions may still exist). The subset of category 2 licenses that we deemed to meet the the Open
De�nition are denoted with ᴼᴰ. Category 4 refers to resources without a license, hence with all rights reserved.
References provides Research Resource Identi�ers as well as citations to resource publications and related Project
Rephetio materials. For information on license provenance, institutional a�liations, and funding for each resource, see
the online table.

Resource Components License Cat. References

Entrez Gene G custom 1 RRID:SCR_002473 [89,90,91]

LabeledIn CtD, CpD custom 1 RRID:SCR_015667 [172,173,174]

MEDLINE DlA, DpS, DrD custom 1 RRID:SCR_002185 [78,142]

MeSH S custom 1 RRID:SCR_004750 [78,79]

Pathway Interaction
Database PW, GpPW 1 RRID:SCR_006866 [98,100,101]

Disease Ontology D CC BY 3.0 2ᴼᴰ RRID:SCR_000476 [73,74,75,76]

DISEASES DaG CC BY 4.0 2ᴼᴰ RRID:SCR_015664 [127,128,136]

DrugCentral PC, CbG, PCiC CC BY 4.0 2ᴼᴰ RRID:SCR_015663 [87,88]

Gene Ontology BP, CC, MF, GpBP,
GpCC, GpMF CC BY 4.0 2ᴼᴰ RRID:SCR_002811 [102,157,158,159]

GWAS Catalog DaG custom 2ᴼᴰ RRID:SCR_012745 [126,133,134,135]

Reactome PW, GpPW custom 2ᴼᴰ RRID:SCR_003485 [97,99,100,101]

LINCS L1000 CdG, CuG, Gr>G custom 2ᴼᴰ [145,146,191]

TISSUES AeG CC BY 4.0 2ᴼᴰ RRID:SCR_015665 [112,113,114]

Uberon A CC BY 3.0 2ᴼᴰ RRID:SCR_010668 [92,93,94]

WikiPathways PW, GpPW CC BY 3.0 /
custom 2ᴼᴰ RRID:SCR_002134 [95,96,100,101]

BindingDB CbG mixed CC BY 3.0
& CC BY-SA 3.0 2ᴼᴰ RRID:SCR_000390 [115,116,118,119]

DisGeNET DaG ODbL 2ᴼᴰ RRID:SCR_006178 [129,130,137,138]

DrugBank C, CbG, CrC custom 2 RRID:SCR_002700 [80,81,82,192]

MEDI CtD, CpD CC BY-NC-SA 3.0 2 RRID:SCR_015668 [170,171]

PREDICT CtD, CpD CC BY-NC-SA 3.0 2 [24,170]

SIDER SE, CcSE CC BY-NC-SA 4.0 2 RRID:SCR_004321 [83,84,85]

https://github.com/dhimmel/integrate/blob/725f4e4b4a737cfb15abe55ef36386c23e1c4f1f/licenses/README.md
http://opendefinition.org/od/2.1/en/
http://opendefinition.org/od/2.1/en/
https://scicrunch.org/resources
https://github.com/dhimmel/integrate/blob/725f4e4b4a737cfb15abe55ef36386c23e1c4f1f/licenses/README.md
https://www.ncbi.nlm.nih.gov/gene
https://github.com/dhimmel/integrate/blob/master/licenses/custom/NCBI.md
https://ftp.ncbi.nlm.nih.gov/pub/lu/LabeledIn/
https://github.com/dhimmel/integrate/blob/master/licenses/custom/LabeledIn.txt
https://www.nlm.nih.gov/pubs/factsheets/medline.html
https://github.com/dhimmel/integrate/blob/master/licenses/custom/MEDLINE.md
https://www.nlm.nih.gov/mesh/
https://github.com/dhimmel/integrate/blob/master/licenses/custom/MeSH.md
http://disease-ontology.org/
https://creativecommons.org/licenses/by/3.0/
http://diseases.jensenlab.org/Search
http://creativecommons.org/licenses/by/4.0/
http://drugcentral.org/
http://creativecommons.org/licenses/by/4.0/
http://www.geneontology.org/
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.ebi.ac.uk/gwas/
https://github.com/dhimmel/integrate/blob/master/licenses/custom/EBI.md
http://reactome.org/
https://github.com/dhimmel/integrate/blob/master/licenses/custom/Reactome.md
https://github.com/dhimmel/integrate/blob/master/licenses/custom/L1000.md
http://tissues.jensenlab.org/Search
http://creativecommons.org/licenses/by/4.0/
http://uberon.github.io/
http://creativecommons.org/licenses/by/3.0/
http://www.wikipathways.org/
https://creativecommons.org/licenses/by/3.0/
https://github.com/dhimmel/integrate/blob/master/licenses/custom/WikiPathways.md
https://www.bindingdb.org/
https://github.com/dhimmel/integrate/blob/master/licenses/custom/BingindDB.md
http://www.disgenet.org/
http://opendatacommons.org/licenses/odbl/
https://www.drugbank.ca/
https://github.com/dhimmel/integrate/blob/master/licenses/custom/DrugBank.md
https://www.vumc.org/cpm/center-precision-medicine-blog/medi-ensemble-medication-indication-resource
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://sideeffects.embl.de/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Resource Components License Cat. References

Bgee AeG, AdG, AuG 4 RRID:SCR_002028 [108,109,110,111]

DOAF DaG 4 RRID:SCR_015666 [131,132,139]

ehrlink CtD, CpD 4 [175,176]

Evolutionary Rate
Covariation GcG 4 RRID:SCR_015669 [147,148,149]

hetio-dag GiG 4 [22,150,151]

Incomplete Interactome GiG 4 [150,151,156,193]

Human Interactome
Database GiG 4 RRID:SCR_015670

[150,151,152,153,154,155]

STARGEO DdG, DuG 4 [140,141,160]

Additional di�culty resulted from license incompatibles across resources, which was caused primarily
by non-commercial and share-alike stipulations. Furthermore, it was often unclear who owned the
data [194]. Therefore, we sought input from legal experts and chronicled our progress
[189,191,192,193,195].

Ultimately, we did not �nd an ideal solution. We had to choose between absolute compliance and
Hetionet: strictly adhering to copyright and licensing arrangements would have decimated the
network. On the other hand, in the United States, mere facts are not subject to copyright, and fair use
doctrine helps protect reuse that is transformative and educational. Hence, we choose a path forward
which balanced legal, normative, ethical, and scienti�c considerations.

If a resource was in the public domain, we licensed any derivatives as CC0 1.0. For resources licensed
to allow reuse, redistribution, and modi�cation, we transmitted their licenses as properties on the
speci�c nodes and relationships in Hetionet v1.0. For all other resources — for example, resources
without licenses or with licenses that forbid redistribution — we sent permission requests to their
creators. The median time till �rst response to our permission requests was 16 days, with only 2
resources a�rmatively granting us permission. We did not receive any responses asking us to remove
a resource. However, we did voluntarily remove MSigDB [196], since its license was highly problematic
[195]. As a result of our experience, we recommend that publicly-funded data should be explicitly
dedicated to the public domain whenever possible.

Permuted hetnets

From Hetionet, we derived �ve permuted hetnets [197]. The permutations preserve node degree but
eliminate edge speci�city by employing an algorithm called XSwap to randomly swap edges [198]. To
extend XSwap to hetnets [22], we permuted each metaedge separately, so that edges were only
swapped with other edges of the same type. We adopted a Markov chain approach, whereby the �rst
permuted hetnet was generated from Hetionet v1.0, the second permuted hetnet was generated
from the �rst, and so on. For each metaedge, we assessed the percent of edges unchanged as the
algorithm progressed to ensure that a su�cient number of swaps had been performed to randomize
the network [197]. Permuted hetnets are useful for computing the baseline performance of
meaningless edges while preserving node degree [199]. Since, our use of permutation focused on
assessing Δ AUROC, a small number of permuted hetnets was su�cient, as the variability in a
metapath’s AUROC across the permuted hetnets was low.

Graph databases & Neo4j

http://bgee.org/
http://doa.nubic.northwestern.edu/pages/search.php
http://csb.pitt.edu/erc_analysis/Methods.php
http://het.io/disease-genes/
http://interactome.dfci.harvard.edu/H_sapiens/
http://stargeo.org/
https://neo4j.com/developer/graph-db-vs-rdbms/


Traditional relational databases — such as SQLite, MySQL, and PostgreSQL — excel at storing highly
structured data in tables. Connectivity between tables is accomplished using foreign-key references
between columns. However, for many biomedical applications the connectivity between entities is of
foremost importance. Furthermore, enforcing a rigid structure of what attributes an entity may
possess is less important and often unnecessarily prohibitive. Graph databases focus instead on
capturing connectivity (relationships) between entities (nodes). Accordingly, graph databases such as
Neo4j o�er greater ease when modeling biomedical relationships and superior performance when
traversing many levels of connectivity [200,201]. Until recently, graph database adoption in
bioinformatics was limited [202]. However lately, the demand to model and capture biological
connectivity at scale has led to increasing adoption [203,204,205,206].

We used the Neo4j graph database for storing and operating on Hetionet and noticed major bene�ts
from tapping into this large open source ecosystem [207]. Persistent storage with immediate access
and the Cypher query language — a sort of SQL for hetnets — were two of the biggest bene�ts. To
facilitate our migration to Neo4j, we updated hetio  — our existing Python package for hetnets [208]
— to export networks into Neo4j and DWPC queries to Cypher. In addition, we created an interactive
GraphGist for Project Rephetio, which introduces our approach and showcases its Cypher queries.
Finally, we created a public Neo4j instance [209], which leverages several modern technologies such
Neo4j Browser guides, cloud hosting with HTTPS, and Docker deployment [210,211].

Machine learning approach

Project Rephetio relied on the previously-published DWPC metric to generate features for compound–
disease pairs. The DWPC measures the prevalence of a given metapath between a given source and
target node [22]. It is calculated by �rst extracting all paths from the source to target node that follow
the speci�ed metapath. Next, each path is weighted by taking the product of the node degrees along
the path raised to a negative exponent. This damping exponent — the sole parameter — thereby
determines the extent that paths through high-degree nodes are downweighted: we chose w = 0.4
based on our past optimizations [22]. The DWPC equals the sum of the path weights (referred to as
path-degree products). Traversing the hetnet to extract all paths between a source and target node,
which we performed in Neo4j, is the most computationally intensive step in computing DWPCs [212].
For future work, we are exploring matrix multiplication approaches, which could improve runtime
several orders of magnitude.

Project Rephetio made several re�nements to metapath-based hetnet edge prediction compared to
previous studies [22,23]. First, we transformed DWPCs by mean scaling and then taking the inverse
hyperbolic sine [213] to make them more amenable to modeling [214]. Second, we bifurcated the
work�ow into an all-features stage and an all-observations stage [40]. The all-features stage assesses
feature performance and does not require computing features for all negatives. Here we selected a
random subset of 3,020 (4 × 755) negatives. Little error was introduced by this optimization, since the
predominant limitation to performance assessment was the small number of positives (755) rather
than negatives. Based on the all-features performance assessment [215], we selected 142 DWPCs to
compute on all observations (all 209,168 compound–disease pairs). The feature selection was
designed to remove uninformative features (according to permutation) and guard against edge-
dropout contamination [216]. Third, we included 14 degree features, which assess the degree of a
speci�c metaedge for either the source compound or target disease.

Network support of predictions

To improve the interpretability of the predictions, we developed a method for decomposing a
prediction into its network support [217]. This information is deployed to our Neo4j Browser guides,
allowing users to assess the biomedical evidence contributing to a given prediction. First, we used
logistic regression terms to quantify the contribution of metapaths that positively support a

https://neo4j.com/developer/graph-db-vs-rdbms/
https://neo4j.com/blog/rdbms-vs-graph-data-modeling/
https://github.com/dhimmel/hetio
http://portal.graphgist.org/graph_gists/drug-repurposing-by-hetnet-relationship-prediction-a-new-hope
https://neo4j.het.io/
https://github.com/greenelab/hetmech


prediction. Second, we decomposed a metapath’s contribution, according to its DWPC, into speci�c
paths contributions. Finally, we aggregated paths based on their source (�rst) or target (last) edge to
quantify the contribution of speci�c edges of the source compound or target disease [218].

Using the acamprosate–epilepsy prediction as an example, we �rst quanti�ed metapath
contributions: 40% of the prediction was supported by CbGbCtD paths, 36% by CbGaD paths, 11% by
CcSEcCtD paths, 8% by CbGpPWpGaD paths, and 5% by CbGeAlD paths. Second, we calculated path
contributions: Acamprosate–binds–GRM5–associates–epilepsy syndrome was the most supportive
path, contributing 11% of the prediction. Finally, we aggregated path contributions to calculate that
the source edge of Acamprosate—binds—GRM5 contributed 23% of the prediction, while the target
edge of epilepsy syndrome–treats–Felbamate contributed 12%.

Prior probability of treatment

The 755 treatments in Hetionet v1.0 are not evenly distributed between all compounds and diseases.
For example, methotrexate treats 19 diseases and hypertension is treated by 68 compounds. We
estimated a prior probability of treatment — based only on the treatment degree of the source
compound and target disease — on 744,975 permutations of the bipartite treatment network [219].
Methotrexate received a 79.6% prior probability of treating hypertension, whereas a compound and
disease that both had only one treatment received a prior of 0.12%.

Across the 209,168 compound–disease pairs, the prior predicted the known treatments with AUROC =
97.9%. The strength of this association threatened to dominate our predictions. However, not
modeling the prior can lead to omitted-variable bias and confounded proxy variables. To address the
issue, we included the logit-transformed prior, without any regularization, as a term in the model. This
restricted model �tting to the 29,799 observations with a nonzero prior — corresponding to the 387
compounds and 77 diseases with at least one treatment. To enable predictions for all 209,168
observations, we set the prior for each compound–disease pair to the overall prevalence of positives
(0.36%).

This method succeeded at accommodating the treatment degrees. The prior probabilities performed
poorly on the validation sets with AUROC = 54.1% on DrugCentral indications and AUROC = 62.5% on
clinical trials. This performance dropo� compared to training shows the danger of encoding treatment
degree into predictions. The bene�ts of our solution are highlighted by the superior validation
performance of our predictions compared to the prior (Figure 3).

Indication sets

We evaluated our predictions on four sets of indications as shown in Figure 3.

Disease Modifying — the 755 disease modifying treatments in PharmacotherapyDB v1.0. These
indications are included in the hetnet as treats edges and used to train the logistic regression
model. Due to edge dropout contamination and self-testing [216,220], over�tting could potentially
in�ate performance on this set. Therefore, for the three remaining indication sets, we removed any
observations that were positives in this set.
DrugCentral — We discovered the DrugCentral database after completing our physician curation
for PharmacotherapyDB. This database contained 210 additional indications [88]. While we didn’t
curate these indications, we observed a high proportion of disease modifying therapy.
Clinical Trial — We compiled indications that have been investigated by clinical trial from
ClinicalTrials.gov [221]. This set contains 5,594 indications. Since these indications were not
manually curated and clinical trials often show a lack of e�cacy, we expected lower performance
on this set.

https://neo4j.het.io/browser/?cmd=play&arg=https://neo4j.het.io/guides/rep/DB00659/DOID_1826.html
https://github.com/olegursu/drugtarget
https://clinicaltrials.gov/


Symptomatic — 390 symptomatic indications from PharacotherapyDB. These edges are included
in the hetnet as palliates edges.

Only the Clinical Trial and DrugCentral indication sets were used for external validation, since the
Disease Modifying and Symptomatic indications were included in the hetnet. As an aside, several
additional indication catalogs have recently been published, which future studies may want to also
consider [170,222,223,224].

Realtime open science & Thinklab

We conducted our study using Thinklab — a platform for realtime open collaborative science — on
which this study was the �rst project [66]. We began the study by publicly proposing the idea and
inviting discussion [225]. We continued by chronicling our progress via discussions. We used Thinklab
as the frontend to coordinate and report our analyses and GitHub as the backend to host our code,
data, and notebooks. On top of our Thinklab team consisting of core contributors, we welcomed
community contribution and review. In areas where our expertise was lacking or advice would be
helpful, we sought input from domain experts and encouraged them to respond on Thinklab where
their comments would be CC BY licensed and their contribution rated and rewarded.

In total, 40 non-team members commented across 86 discussions, which generated 622 comments
and 191 notes (Figure 6). Thinklab content for this project totaled 145,771 words or 918,837
characters [226]. Using an estimated 7,000 words per academic publication as a benchmark, Project
Rephetio generated written content comparable in volume to 20.8 publications prior to its
completion. We noticed several other bene�ts from using Thinklab including forging a community of
contributors [227]; receiving feedback during the early stages when feedback was most actionable
[228]; disseminating our research without delay [229,230]; opening avenues for external input [231];
facilitating problem-oriented teaching [232,233]; and improving our documentation by maintaining a
publication-grade digital lab notebook [234].

Figure 6:  The growth the Project Rephetio corpus on Thinklab over time. This �gure shows Project Rephetio
contributions by user over time. Each band represented the cumulative contribution of a Thinklab user to discussions in
Project Rephetio [226]. Users are ordered by date of �rst contribution. Users who contributed over 4,500 characters are

https://think-lab.github.io/p/rephetio/discussion/


named. The square root transformation of characters written per user accentuates the activity of new contributors,
thereby emphasizing collaboration and diverse input.

Thinklab began winding down operations in July 2017 and has switched to a static state. While users
will no longer be able to add comments, the corpus of content remains browsable at https://think-
lab.github.io and available in machine-readable formats at dhimmel/thinklytics .

The preprint for this study is available at doi.org/bs4f [235]. The manuscript was written in markdown,
originally on Thinklab at doi.org/bszr [236]. In August 2017, we switched to using the Manubot system
to generate the manuscript. With Manubot, a GitHub repository ( dhimmel/rephetio-manuscript )
tracks the manuscript’s source code, while continuous integration automatically rebuilds the
manuscript upon changes. As a result, the latest version of the manuscript is always available at
dhimmel.github.io/rephetio-manuscript. Additionally, readers can leave feedback or questions for the
Project Rephetio team via GitHub Issues.

Software & data availability

All software and datasets from Project Rephetio are publicly available on GitHub, Zenodo, or Figshare
[237]. Additional documentation for these materials is available in the corresponding Thinklab
discussions. For reader convenience, software, datasets, and Thinklab discussions have been cited
throughout the manuscript as relevant.
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Processing DisGeNET for disease-gene relationships
Daniel Himmelstein, janet piñero
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Dhimmel/Disgenet V1.0: Processing The Disgenet Database Of Gene–Disease Associations
Daniel S Himmelstein, Janet Piñero
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Functional disease annotations for genes using DOAF
Daniel Himmelstein
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Dhimmel/Doaf V1.0: Processing The Doaf Database Of Gene–Disease Associations
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The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS
Catalog)
Jacqueline MacArthur, Emily Bowler, Maria Cerezo, Laurent Gil, Peggy Hall, Emma Hastings,
Heather Junkins, Aoife McMahon, Annalisa Milano, Joannella Morales, … Helen Parkinson
Nucleic Acids Research (2016-11-29) https://doi.org/f9v7cp
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Extracting disease-gene associations from the GWAS Catalog
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Calculating genomic windows for GWAS lead SNPs
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DISEASES: Text mining and data integration of disease–gene associations
Sune Pletscher-Frankild, Albert Pallejà, Kalliopi Tsafou, Janos X Binder, Lars Juhl Jensen
Methods (2015-03) https://doi.org/f3mn6s
DOI: 10.1016/j.ymeth.2014.11.020 · PMID: 25484339

DisGeNET: a discovery platform for the dynamical exploration of human diseases and
their genes
J Pinero, N Queralt-Rosinach, A Bravo, J Deu-Pons, A Bauer-Mehren, M Baron, F Sanz, LI Furlong
Database (2015-04-15) https://doi.org/f3mn6t
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DisGeNET: a comprehensive platform integrating information on human disease-
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Janet Piñero, Àlex Bravo, Núria Queralt-Rosinach, Alba Gutiérrez-Sacristán, Jordi Deu-Pons,
Emilio Centeno, Javier García-García, Ferran Sanz, Laura I Furlong
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DOI: 10.1093/nar/gkw943 · PMID: 27924018 · PMCID: PMC5210640

A Framework for Annotating Human Genome in Disease Context
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PLoS ONE (2012-12-10) https://doi.org/f3mn6v
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STARGEO: expression signatures for disease using crowdsourced GEO annotation
Daniel Himmelstein, Frederic Bastian, Dexter Hadley, Casey Greene
ThinkLab (2015-07-28) https://doi.org/f3mqwh
DOI: 10.15363/thinklab.d96

Dhimmel/Stargeo V1.0: Di�erentially Expressed Genes For 48 Diseases From Stargeo
Daniel Himmelstein, Dexter Hadley, Alexander Schepanovski
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Dhimmel/Medline V1.0: Disease, Symptom, And Anatomy Cooccurence In Medline
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Disease similarity from MEDLINE topic cooccurrence
Daniel Himmelstein
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On the Interpretation of χ 2 from Contingency Tables, and the Calculation of P
RA Fisher
Journal of the Royal Statistical Society (1922-01) https://doi.org/frpswx
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Computing consensus transcriptional pro�les for LINCS L1000 perturbations
Daniel Himmelstein, Caty Chung
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Consensus signatures for LINCS L1000 perturbations
Daniel Himmelstein, Leo Brueggeman, Sergio Baranzini
Figshare (2016) https://doi.org/f3mqvs
DOI: 10.6084/m9.�gshare.3085426.v1

Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene
Prioritization and Construction of Informative Gene-Based Networks
Nolan Priedigkeit, Nicholas Wolfe, Nathan L Clark
PLOS Genetics (2015-02-13) https://doi.org/f3mn6w
DOI: 10.1371/journal.pgen.1004967 · PMID: 25679399 · PMCID: PMC4334549

Selecting informative ERC (evolutionary rate covariation) values between genes
Daniel Himmelstein, Raghavendran Partha
ThinkLab (2015-04-22) https://doi.org/f3mqv9
DOI: 10.15363/thinklab.d57

Dhimmel/Erc V1.0: Processing Human Evolutionary Rate Covaration Data
Daniel S Himmelstein
Zenodo (2016-03-28) https://doi.org/f3mqwm
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Creating a catalog of protein interactions
Daniel Himmelstein, Dexter Hadley, Alexey Strokach
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Dhimmel/Ppi V1.0: Compiling A Human Protein Interaction Catalog
Daniel S Himmelstein, Sergio E Baranzini
Zenodo (2016-03-28) https://doi.org/f3mqtw
DOI: 10.5281/zenodo.48443

Towards a proteome-scale map of the human protein–protein interaction network
Jean-François Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-Kishikawa, Amélie Dricot,
Ning Li, Gabriel F Berriz, Francis D Gibbons, Matija Dreze, Nono Ayivi-Guedehoussou, … Marc
Vidal
Nature (2005-09-28) https://doi.org/dw6q23
DOI: 10.1038/nature04209 · PMID: 16189514

An empirical framework for binary interactome mapping
Kavitha Venkatesan, Jean-François Rual, Alexei Vazquez, Ulrich Stelzl, Irma Lemmens, Tomoko
Hirozane-Kishikawa, Tong Hao, Martina Zenkner, Xiaofeng Xin, Kwang-Il Goh, … Marc Vidal
Nature Methods (2008-12-07) https://doi.org/cn6p3m
DOI: 10.1038/nmeth.1280 · PMID: 19060904 · PMCID: PMC2872561

Next-generation sequencing to generate interactome datasets
Haiyuan Yu, Leah Tardivo, Stanley Tam, Evan Weiner, Fana Gebreab, Changyu Fan, Nenad
Svrzikapa, Tomoko Hirozane-Kishikawa, Edward Rietman, Xinping Yang, … Marc Vidal
Nature Methods (2011-04-24) https://doi.org/bzrsvs
DOI: 10.1038/nmeth.1597 · PMID: 21516116 · PMCID: PMC3188388

A Proteome-Scale Map of the Human Interactome Network
Thomas Rolland, Murat Taşan, Benoit Charloteaux, Samuel J Pevzner, Quan Zhong, Nidhi Sahni,
Song Yi, Irma Lemmens, Celia Fontanillo, Roberto Mosca, … Marc Vidal
Cell (2014-11) https://doi.org/f3mn6x
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Uncovering disease-disease relationships through the incomplete interactome
J Menche, A Sharma, M Kitsak, SD Ghiassian, M Vidal, J Loscalzo, A-L Barabasi
Science (2015-02-19) https://doi.org/f3mn6z
DOI: 10.1126/science.1257601 · PMID: 25700523 · PMCID: PMC4435741

The GOA database: Gene Ontology annotation updates for 2015
Rachael P Huntley, Tony Sawford, Prudence Mutowo-Meullenet, Aleksandra Shypitsyna, Carlos
Bonilla, Maria J Martin, Claire O'Donovan
Nucleic Acids Research (2014-11-06) https://doi.org/35x
DOI: 10.1093/nar/gku1113 · PMID: 25378336 · PMCID: PMC4383930

Compiling Gene Ontology annotations into an easy-to-use format
Daniel Himmelstein, Casey Greene, Venkat Malladi, Frederic Bastian
ThinkLab (2015-03-12) https://doi.org/f3mqt9
DOI: 10.15363/thinklab.d39

Gene-Ontology: Initial Zenodo Release
Daniel Himmelstein, Casey Greene, Venkat Malladi, Frederic Bastian, Sergio Baranzini
Zenodo (2015-07-28) https://doi.org/f3mqvj
DOI: 10.5281/zenodo.21711

Precision annotation of digital samples in NCBI’s gene expression omnibus
Dexter Hadley, James Pan, Osama El-Sayed, Jihad Aljabban, Imad Aljabban, Tej D Azad,
Mohamad O Hadied, Shuaib Raza, Benjamin Abhishek Rayikanti, Bin Chen, … Atul J Butte
Scienti�c Data (2017-09-19) https://doi.org/gbv379
DOI: 10.1038/sdata.2017.125 · PMID: 28925997 · PMCID: PMC5604135

Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
R Edgar
Nucleic Acids Research (2002-01-01) https://doi.org/fttpkn
DOI: 10.1093/nar/30.1.207 · PMID: 11752295 · PMCID: PMC99122

NCBI GEO: archive for functional genomics data sets—update
Tanya Barrett, Stephen E Wilhite, Pierre Ledoux, Carlos Evangelista, Irene F Kim, Maxim
Tomashevsky, Kimberly A Marshall, Katherine H Phillippy, Patti M Sherman, Michelle Holko, …
Alexandra Soboleva
Nucleic Acids Research (2012-11-26) https://doi.org/f3mn62
DOI: 10.1093/nar/gks1193 · PMID: 23193258 · PMCID: PMC3531084

Dhimmel/Lincs V2.0: Re�ned Consensus Signatures From Lincs L1000
Daniel Himmelstein, Leo Brueggeman, Sergio Baranzini
Zenodo (2016-03-08) https://doi.org/f3mqvr
DOI: 10.5281/zenodo.47223

l1000.db: SQLite database of LINCS L1000 metadata
Daniel Himmelstein, Leo Brueggeman, Sergio Baranzini
Figshare (2016) https://doi.org/f3mqtq
DOI: 10.6084/m9.�gshare.3085837.v1

Assessing the imputation quality of gene expression in LINCS L1000
Daniel Himmelstein
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Positive correlations between knockdown and overexpression pro�les from LINCS L1000
Daniel Himmelstein, Casey Greene, Lars Juhl Jensen

https://doi.org/f3mn6z
https://doi.org/10.1126/science.1257601
https://www.ncbi.nlm.nih.gov/pubmed/25700523
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435741
https://doi.org/35x
https://doi.org/10.1093/nar/gku1113
https://www.ncbi.nlm.nih.gov/pubmed/25378336
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383930
https://doi.org/f3mqt9
https://doi.org/10.15363/thinklab.d39
https://doi.org/f3mqvj
https://doi.org/10.5281/zenodo.21711
https://doi.org/gbv379
https://doi.org/10.1038/sdata.2017.125
https://www.ncbi.nlm.nih.gov/pubmed/28925997
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604135
https://doi.org/fttpkn
https://doi.org/10.1093/nar/30.1.207
https://www.ncbi.nlm.nih.gov/pubmed/11752295
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC99122
https://doi.org/f3mn62
https://doi.org/10.1093/nar/gks1193
https://www.ncbi.nlm.nih.gov/pubmed/23193258
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531084
https://doi.org/f3mqvr
https://doi.org/10.5281/zenodo.47223
https://doi.org/f3mqtq
https://doi.org/10.6084/m9.figshare.3085837.v1
https://doi.org/f3mqtr
https://doi.org/10.15363/thinklab.d185
https://doi.org/f3mqt7


167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

ThinkLab (2016-02-26) https://doi.org/f3mqt7
DOI: 10.15363/thinklab.d171

Announcing PharmacotherapyDB: the Open Catalog of Drug Therapies for Disease
Daniel Himmelstein
ThinkLab (2016-03-15) https://doi.org/f3mqtv
DOI: 10.15363/thinklab.d182

PharmacotherapyDB 1.0: the open catalog of drug therapies for disease
Daniel Himmelstein, Pouya Khankhanian, Christine S Hessler, Ari J Green, Sergio Baranzini
Figshare (2016) https://doi.org/f3mqvq
DOI: 10.6084/m9.�gshare.3103054

Dhimmel/Indications V1.0. Pharmacotherapydb: The Open Catalog Of Drug Therapies For
Disease
Daniel S Himmelstein, Pouya Khankhanian, Christine S Hessler, Ari J Green, Sergio E Baranzini
Zenodo (2016-03-15) https://doi.org/f3mqwb
DOI: 10.5281/zenodo.47664

How should we construct a catalog of drug indications?
Daniel Himmelstein, Benjamin Good, Tudor Oprea, Allison McCoy, Antoine Lizee
ThinkLab (2015-01-13) https://doi.org/f3mqtz
DOI: 10.15363/thinklab.d21

Development and evaluation of an ensemble resource linking medications to their
indications
Wei-Qi Wei, Robert M Cronin, Hua Xu, Thomas A Lasko, Lisa Bastarache, Joshua C Denny
Journal of the American Medical Informatics Association (2013-09) https://doi.org/f3mn63
DOI: 10.1136/amiajnl-2012-001431 · PMID: 23576672 · PMCID: PMC3756263

LabeledIn: Cataloging labeled indications for human drugs
Ritu Khare, Jiao Li, Zhiyong Lu
Journal of Biomedical Informatics (2014-12) https://doi.org/f3mn64
DOI: 10.1016/j.jbi.2014.08.004 · PMID: 25220766 · PMCID: PMC4260997

Scaling drug indication curation through crowdsourcing
Ritu Khare, John D Burger, John S Aberdeen, David W Tresner-Kirsch, Theodore J Corrales,
Lynette Hirchman, Zhiyong Lu
Database (2015-01-01) https://doi.org/f3mn65
DOI: 10.1093/database/bav016 · PMID: 25797061 · PMCID: PMC4369375

Processing LabeledIn to extract indications
Daniel Himmelstein, Ritu Khare
ThinkLab (2015-04-02) https://doi.org/f3mqww
DOI: 10.15363/thinklab.d46

Development and evaluation of a crowdsourcing methodology for knowledge base
construction: identifying relationships between clinical problems and medications
Allison B McCoy, Adam Wright, Archana Laxmisan, Madelene J Ottosen, Jacob A McCoy, David
Butten, Dean F Sittig
Journal of the American Medical Informatics Association (2012-09) https://doi.org/f3mn66
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Extracting indications from the ehrlink resource
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Expert curation of our indication catalog for disease-modifying treatments
Daniel Himmelstein, Pouya Khankhanian, Chrissy Hessler
ThinkLab (2015-07-14) https://doi.org/f3mqwn
DOI: 10.15363/thinklab.d95

Enabling reproducibility and reuse
Jesse Spaulding, Daniel Himmelstein, Casey Greene, Benjamin Good
ThinkLab (2015-01-16) https://doi.org/f3mn67
DOI: 10.15363/thinklab.d23

The need and drive for open data in biomedical publishing
Iain Hrynaszkiewicz
Serials: The Journal for the Serials Community (2011-03-01) https://doi.org/c7zvmd
DOI: 10.1629/2431

The Open Knowledge Foundation: Open Data Means Better Science
Jennifer C Molloy
PLoS Biology (2011-12-06) https://doi.org/g3b
DOI: 10.1371/journal.pbio.1001195 · PMID: 22162946 · PMCID: PMC3232214

How open science helps researchers succeed
Erin C McKiernan, Philip E Bourne, CTitus Brown, Stuart Buck, Amye Kenall, Jennifer Lin, Damon
McDougall, Brian A Nosek, Karthik Ram, Courtney K Soderberg, … Tal Yarkoni
eLife (2016-07-07) https://doi.org/gbqsng
DOI: 10.7554/elife.16800 · PMID: 27387362 · PMCID: PMC4973366

Data reuse and the open data citation advantage
Heather A Piwowar, Todd J Vision
PeerJ (2013-10-01) https://doi.org/f3mn68
DOI: 10.7717/peerj.175 · PMID: 24109559 · PMCID: PMC3792178

Enhancing reproducibility for computational methods
V Stodden, M McNutt, DH Bailey, E Deelman, Y Gil, B Hanson, MA Heroux, JPA Ioannidis, M
Taufer
Science (2016-12-08) https://doi.org/gbr42b
DOI: 10.1126/science.aah6168 · PMID: 27940837

Best Practices for Computational Science: Software Infrastructure and Environments for
Reproducible and Extensible Research
Victoria Stodden, Sheila Miguez
Journal of Open Research Software (2014-07-09) https://doi.org/f3mn69
DOI: 10.5334/jors.ay

Disclose all data in publications
Keith Baggerly
Nature (2010-09) https://doi.org/fhc9z5
DOI: 10.1038/467401b · PMID: 20864982

Open by default: a proposed copyright license and waiver agreement for open access
research and data in peer-reviewed journals
Iain Hrynaszkiewicz, Matthew J Cockerill
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https://doi.org/10.15363/thinklab.d62
https://doi.org/f3mqwn
https://doi.org/10.15363/thinklab.d95
https://doi.org/f3mn67
https://doi.org/10.15363/thinklab.d23
https://doi.org/c7zvmd
https://doi.org/10.1629/2431
https://doi.org/g3b
https://doi.org/10.1371/journal.pbio.1001195
https://www.ncbi.nlm.nih.gov/pubmed/22162946
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232214
https://doi.org/gbqsng
https://doi.org/10.7554/elife.16800
https://www.ncbi.nlm.nih.gov/pubmed/27387362
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973366
https://doi.org/f3mn68
https://doi.org/10.7717/peerj.175
https://www.ncbi.nlm.nih.gov/pubmed/24109559
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792178
https://doi.org/gbr42b
https://doi.org/10.1126/science.aah6168
https://www.ncbi.nlm.nih.gov/pubmed/27940837
https://doi.org/f3mn69
https://doi.org/10.5334/jors.ay
https://doi.org/fhc9z5
https://doi.org/10.1038/467401b
https://www.ncbi.nlm.nih.gov/pubmed/20864982
https://doi.org/f3mn7c
https://doi.org/10.1186/1756-0500-5-494
https://www.ncbi.nlm.nih.gov/pubmed/22958225
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465200


187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

Creative Commons licenses and the non-commercial condition: Implications for the re-
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